Вы отправили работу на проверку эксперту. Укажите номер телефона на него придет СМС
Скачать .pdf

Вариант 19

Математика Профильный уровень

Часть 1

Ответом на задания 1—12 должно быть целое число или десятичная дробь.

1
1

Показания счетчика электроэнергии 1 мая составляли 37142 кВт∙ч, а 1 июня — 37292 кВт∙ч. Сколько нужно заплатить за электроэнергию за май, если известно, что цена 1 кВт∙ч электроэнергии составляет:

3 руб. 50 коп., если ее расход не превышает социальной нормы 120 кВт∙ч;

4 руб. 20 коп. – сверх социальной нормы ? Ответ дайте в рублях.

2
2

На диаграмме показана температура воздуха (в градусах Цельсия) за 31 день мая (по горизонтальной оси откладываются дни месяца, по вертикальной температура в градусах Цельсия). Определите, сколько дней в течение мая температура не превышала 15°C.

3
3

Каждая клетка имеет размер 1х1. Найдите длину отрезка  АВ.

4
4

Вероятность попасть в мишень равна 0,7. Произведено три выстрела. Какова вероятность, что мишень была поражена ровно два раза?

5
5

Найдите корень уравнения

[math]\frac{3^x}{\sqrt3}=\frac19[/math]

6
6

В треугольнике АВС угол С равен 90º. Площади квадратов АВРК и АСЕМ равны 16 и 12 соответственно. Найдите площадь квадрата СВNT.

7
7

На рисунке изображён график функции y = F(x) − одной из первообразных некоторой функции f(x), определённой на интервале (‐7;4). Пользуясь рисунком, определите значение функции f(x) в точке х=1.

8
8

Цилиндр описан около шара. Найдите объем шара, если известно, что объем цилиндра равен 60.

9
9

Найдите значение выражения

[math]\frac{log_{25}2}{log_{125}2}[/math]

10
10

Максимальная высота подъёма тела, брошенного под углом к горизонту, вычисляется по формуле [math]h=\frac{(v\cdot sin\alpha)^2}{2g}[/math] где v (м/c) – начальная скорость тела, α – угол, под которым тело брошено к горизонту, g – ускорение свободного падения (считать, что g=10 м/ 2). С какой скоростью необходимо бросить мяч под углом 30º к горизонту, чтобы он поднялся на высоту 4 м 5 см?

11
11

Одна бригада может убрать поле за 12 дней, а другая выполняет ту же работу за 75% времени, необходимого первой бригаде. После того как в течение 5 дней работала первая бригада, к ней присоединилась вторая и они вместе закончили работу. Сколько дней бригады работали вместе?

12
12

Найдите точку минимума функции [math]f(x)=x^2-3,75x-ln(x+2)[/math]

 

Часть 2.

При выполнении заданий 13—19 требуется записать полное решение и ответ.

13

Дано уравнение [math]\sqrt{0,5+sin^2x}+cos2x=1[/math]

а) решите уравнение

б) Найдите его корни, принадлежащие отрезку

Показать ответ
14

В основании прямой призмы ABCA1B1C1 лежит прямоугольный треугольник АВС гипотенузой АВ, причем АВ=АА1. Через точку В1 перпендикулярно СА1 проведена плоскость α.

а) Докажите, что сечением призмы плоскостью α является прямоугольный треугольник.

б) Найдите объем большей части призмы, на которые ее делит плоскость α, если известно, что АС=8, ВС=6.

Показать ответ
188,8
15

Решите неравенство [math]\frac1{log_2(x^4-8x^2+16)-log_2^2(4-x^2)}\leq1[/math]

Показать ответ
16

На стороне АС треугольника АВС отметили точку D так, что [math]BC=\sqrt{AC\cdot CD}[/math]

а) Докажите, что углы BAD и СВD равны.

б) Найдите отношение отрезков биссектрисы СL треугольника АВС, на которые ее делит прямая ВD, если известно, что ВС=6, АС=9.

Показать ответ
2
17

1 июня планируется взять кредит в банке на сумму 6 млн. рублей на срок 12 месяцев. Условия возврата таковы:

— 15 числа каждого месяца долг возрастает на r % (r – целое число) по сравнению с началом текущего месяца;

— с 16 по 28 число необходимо выплатить часть долга так, чтобы на начало каждого следующего месяца долг уменьшался на одну и ту же сумму по сравнению с предыдущим месяцем.

Найдите наименьшую возможную ставку r, если известно, что в декабре банку будет выплачено более, чем на 100 тыс. руб. больше, нежели в марте.

Показать ответ
7
18

Найдите все значения параметра а, при каждом из которых уравнение [math]4^{\vert x\vert}+a\cdot2^{\vert x\vert+2}=6a^2-13a+5[/math] имеет ровно два корня.

Показать ответ

19

Известно, что a, b, c, d – попарно различные натуральные числа, большие 1.

А) Может ли выполняться равенство [math]\frac1a+\frac1b=\frac1c+\frac1d?[/math]

Б) Может ли выполняться равенство [math]\frac1a+\frac1b+\frac1c+\frac1d=1,26?[/math]

В) Найдите наименьшее и наибольшее значение суммы [math]S=\frac1a+\frac1b+\frac1c+\frac1d[/math], если известно, что 1,2<S<1,3

Показать ответ

А) Да

Б) Нет

В) [math]1\frac5{24}{}_,^.\;1\frac{17}{60}[/math]

0 из 0
Ваш ответ Правильный ответ Первичный балл

Здесь появится результат тестовой части.

Нажмите на кнопку «Завершить работу», чтобы увидеть правильные ответы.

Делитесь своими результатами или спрашивайте, как решить конкретное задание. Будьте вежливы, ребята:
1 884 414
Уже готовятся к ЕГЭ, ОГЭ и ВПР.
Присоединяйся!
Мы ничего не публикуем от вашего имени
или
Ответьте на пару вопросов
Вы...
Ученик Учитель Родитель
Уже зарегистрированы?