Задание № 7907

Натуральное число называется палиндромом, если при расстановке его цифр в обратном порядке оно не изменяется (например, 8, 22, 171 и т.п.).

а) Сколько существует шестизначных палиндромов, каждая цифра в которых встречается не больше двух раз?

б) Существует ли пара натуральных чисел (а;b), таких, что никакая натуральная степень числа а не является палиндромом, а любая степень числа b является?

в) Сколько существует упорядоченных пар (х; у), где х,у — двузначные палиндромы, х≠y, x + у — палиндром, причём нечётный?


Решать другие задания по теме: Числа и их свойства

Показать ответ
Комментарий:

Решение:

a) Шестизначный палиндром имеет вид [math]\overline{xyzzyx}[/math]. Цифру [math]x[/math] можно выбрать 9 способами (x[math](x\neq0)[/math]), после этого [math]y[/math] - тоже 9 способами [math](y\neq x)[/math], затем [math]z[/math] - 8 способами. Всего [math]9\times9\times8=648[/math] таких палиндромов.

б) Да, приведем примеры: [math]a=10,\;b=1.[/math] [math]a^n=10^n[/math] - не является палиндромом, [math]b^n=1[/math] - палиндром.

в) Все двузначные палиндромы, очевидно, имеют вид [math]11a[/math], [math]1\leq a\leq9[/math]. Пусть первый палиндром равен [math]11\alpha[/math] , второй [math]11\beta[/math], тогда их сумма - [math]11(\alpha+\beta)<200[/math] . Среди трехзначных чисел, меньших 200, все палиндромы имеют вид [math]1y1[/math], где [math]y[/math] - цифра. На 11 из них делится только 121. Значит суммой двузначных палиндромов, являющейся палиндромом, может быть одно из чисел 33,55,.....,121, то есть одно из чисел [math]11t.\;3\leq t\leq11,\;t[/math] - нечетно. Для каждого [math]t[/math] найдем количество его представлений в виде суммы [math]\begin{array}{l}t=\alpha+\beta,\;(\alpha\neq\beta).\\\end{array}[/math]

Если [math]\begin{array}{l}t=\alpha+\beta\\\end{array}[/math], то [math]\begin{array}{l}\alpha=1,...,t-1\\\end{array}[/math], при этом [math]\begin{array}{l}\alpha\neq\beta\\\end{array}[/math], так как [math]t\;[/math] нечетно. То есть для каждого [math]t\;-(t-1)[/math] способов. Тогда искомое число вариантов равно [math]2+4+6+8+10=30[/math].

Однако при таком подсчете для [math]t=11[/math] мы посчитали два лишних представления [math](121=110+11=11+110)[/math], так как число [math]110[/math] не является палиндромом. Значит, всего 30-2=28 вариантов.

Ответ: а) 648; б) да; в) 28.

Ответ:

Нашли ошибку в задании? Выделите фрагмент и нажмите Ctrl + Enter.