Задание № 26489
Теплоход затратил 5 часов на путь вниз по течению реки от пункта A до пункта B. На обратный путь против течения он затратил 8 часов 20 минут. Найти скорость теплохода, если путь от A до B равен 100 километрам.
[topic]
Решать другие задания по теме: {topic-name}
[topic]
Показать ответ
Комментарий:
Пусть X км/ч скорость теплохода, а Y км/ч скорость реки. Тогда скорость вниз по течению реки (X+Y) км/ч, а вверх против течения - (X-Y) км/ч. При этом от пункта А до пункта В теплоход проехал (X+Y)⋅5 км, и от пункта В до пункта А (X-Y)⋅(8+20/60) км, а по условию расстояние между А и В 100 км. Составим и решим систему уравнений. [math]\left(x+y\right)\cdot5=100[/math] [math]\left(x-y\right)\cdot8\frac13=100[/math] 1) y=20-x 2) [math]\left(x-(20-x)\right)\cdot\frac{25}3=100[/math] 2x-20=12 2x=32 x=16 км/ч скорость теплохода Ответ: 16 Ответ:
Пусть X км/ч скорость теплохода, а Y км/ч скорость реки. Тогда скорость вниз по течению реки (X+Y) км/ч, а вверх против течения - (X-Y) км/ч. При этом от пункта А до пункта В теплоход проехал (X+Y)⋅5 км, и от пункта В до пункта А (X-Y)⋅(8+20/60) км, а по условию расстояние между А и В 100 км. Составим и решим систему уравнений. [math]\left(x+y\right)\cdot5=100[/math] [math]\left(x-y\right)\cdot8\frac13=100[/math] 1) y=20-x 2) [math]\left(x-(20-x)\right)\cdot\frac{25}3=100[/math] 2x-20=12 2x=32 x=16 км/ч скорость теплохода Ответ: 16 Ответ:
Нашли ошибку в задании? Выделите фрагмент и нажмите Ctrl + Enter.