Задание № 21813

В треугольнике АВС проведена медиана ВМ.

А) Может ли радиус окружности, вписанной в треугольник АВМ, быть в два раза меньше радиуса окружности, вписанной в треугольник АВС?

Б) Окружности, вписанные в треугольники АВМ и СВМ, касаются медианы ВМ в точках Р и К соответственно. Найдите расстояние между точками Р и К, если известно, что АВ=17, ВС=7, АС= [math]\sqrt{177}[/math].


Решать другие задания по теме: Экономические задачи

Показать ответ
Комментарий:

Решение:

А)Найдем радиус вписанной окружности через следующую формулу: [math]S=pr[/math], где [math]p=\\frac P2[/math]

Отсюда [math]r=\\frac{2S}P[/math]

Радиус вписанной окружности в треугольник ABM: [math]r_{ABM}=\\frac{2S_{ABM}}{AB+BM+AM}[/math]

Радиус вписанной окружности в треугольник ABC: [math]r_{ABC}=\\frac{2S_{ABC}}{AB+BC+AC}[/math]

Пусть [math]r_{ABM}=\\frac12r_{ABC}[/math]. Тогда

[math]\\frac{2S_{ABM}}{AB+BM+AM}=\\frac{2S_{ABC}}{AB+BC+AC}[/math]

[math]S_{ABC}=2S_{ABM}[/math] , т.к. BM-медиана

Следовательно, знаменатели равны, т.е [math]BM+AM=BC+2AM[/math][math]BC+AM=BM[/math]

Б) Исходя из свойства о том,что прямые, выходящие из одной точки и касающиеся окружности, образуют два равных по величине отрезка, получим следующие выражения [math]MP=p_{ABM}-AB=\\frac{BM+AM}2-8.5=\\frac{BM+MC}2-8.5[/math]

[math]MК=p_{СBM}-BC=\\frac{BM+CM}2-3.5[/math]

Получим, что [math]PK=MK-MP=-3.5+8=5[/math]

Ответ: А) нет; Б) 5

Ответ:

Нашли ошибку в задании? Выделите фрагмент и нажмите Ctrl + Enter.