Вы отправили работу на проверку эксперту. Укажите номер телефона на него придет СМС
Скачать .pdf

Вариант 9

Математика Профильный уровень

Часть 1

Ответом на задания 1—12 должно быть целое число или десятичная дробь.

1
1

В подарок девушке юноша купил розы разного цвета: красные, белые, жёлтые — в количестве 15 штук. Найдите количество жёлтых роз, если красные составляли 20% от общего количества, а белые —25% от оставшихся.

2
2

На рисунке 40 жирными точками показано суточное количество осадков, выпавших в Дождевске со 2 по 14 марта 1972 года. По горизонтали указываются числа месяца, по вертикали — количество осадков, выпавших в соответствующий день в миллиметрах. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, сколько дней из данного периода не выпадало осадков.

3
3

Найдите площадь трапеции, изображенной на рисунке.

4
4

Конференция проводится в течение 6 дней. Всего запланировано 80 докладов, в первый день — 10 докладов, во второй и третий дни — по 17 докладов, остальные распределены поровну между четвёртым, пятым и шестыми днями. Какова вероятность того, что доклад профессора К. окажется запланированным на последний день конференции?

5
5

Найдите корень уравнения [math]81^{x-5}=\frac13[/math].

6
6

В треугольнике ABC угол С равен 90º, CH — высота, BC = 8, sin A = 1/4. Найдите АH.

7
7

Материальная точка движется прямолинейно по закону [math]x(t)=-\frac12t^4+15t^3+9t+17[/math] где х — расстояние от точки отсчёта в метрах, t — время в секундах, измеренное с начала движения. Найдите её скорость (в метрах в секунду) в момент времени t = 4 с.

8
8

Объем куба равен 3√3 / 8. Найдите его диагональ.

9
9

Найдите значение выражения

[math]\frac{(18a^8b^9)^3\times(3a^9b^4)^2}{(3a^6b^5)^7}[/math]

10
10

Зависимость объёма спроса q (единиц в месяц) на продукцию предприятия-монополиста от цены р (тыс. руб.) задаётся формулой q = 150 — 25р. Выручка предприятия за месяц r (в тыс. руб.) вычисляется по формуле r(p) = q ∗ p. Определите наибольшую цену р, при которой месячная выручка r(р) составит не менее 104 тыс. руб. Ответ приведите в тыс. руб.

11
11

Две бригады, состоящие из рабочих одинаковой квалификации, одновременно начали выполнять два одинаковых заказа. В первой бригаде было 18 рабочих, а во второй — 34 рабочих. Через 11 дней после начала работы в первую бригаду перешли 10 рабочих из второй бригады. В итоге оба заказа были выполнены одновременно. Найдите, сколько дней потребовалось на выполнение заказов.

12
12

Найдите наибольшее значение функции [math]y=\frac{16}x+x[/math] на отрезке [4; 8].

 

Часть 2.

При выполнении заданий 13—19 требуется записать полное решение и ответ.

13

а) Решите уравнение [math]\cos3x=2\sin\left(\frac{3\mathrm\pi}2+x\right)[/math].

б) Найдите все корни этого уравнения, принадлежащие промежутку (-3π/2; 0].

Показать ответ

Решение:

а) [math]\begin{array}{l}\cos3x=\cos(2x+x)=\cos2x\cos x-\sin2x\sin x=\\=(\cos^2x-\sin^2x)\cos x-2\sin^2\cos x=\\=(2\cos^2x-1)\cos x-2\cos x(1-\cos^2x)=4\cos^3-3\cos x\end{array}[/math]

Тогда исходное уравнение равносильно уравнению

[math]\begin{array}{l}4\cos^3-3\cos x=-2\cos x\\\cos x(4\cos^2x-1)=0\\\cos x=0;\;\;x=\frac{\mathrm\pi}2+\mathrm{πn},\;\mathrm n\in\mathbb{Z}\\\mathrm{cosx}=\pm\frac12;\;\mathrm x=\pm\frac{\mathrm\pi}3+\mathrm{πk},\;\mathrm k\in\mathbb{Z}\end{array}[/math]

б) С помощью числовой окружности отберем корни, принадлежащие указанному промежутку:

Ответ: а) [math]\frac{\mathrm\pi}2+\mathrm{πn},\;\mathrm n\in\mathbb{Z};[/math]

[math]\pm\frac{\mathrm\pi}3+\mathrm{πk},\;\mathrm k\in\mathbb{Z};[/math]

б) [math]-\frac{4\mathrm\pi}3,\;-\frac{2\mathrm\pi}3,\;-\frac{\mathrm\pi}2,\;-\frac{\mathrm\pi}3[/math]

14

В правильной треугольной призме ABCA1B1C1 боковое ребро равно √6, сторона основания 4.

а) Постройте сечение призмы плоскостью, проходящей через прямую С1К и перпендикулярную плоскости BCC1, где К — середина стороны АС.

б) Найдите косинус угла между прямой С1К и плоскостью боковой грани ВВ1С1С

Показать ответ

Решение:

а) В треугольнике [math]ABC\;AH\perp BC[/math], через точку [math]K[/math] проводим [math]KM\parallel AH[/math], отсюда [math]KM\perp BC[/math]

[math]С_1С\perp(ABC)[/math], как высота прямой призмы, тогда [math]С_1С\perp KM[/math], поскольку [math]KM[/math] лежит в плоскости [math](ABC)[/math], [math]KM\perp(BB_1C_1)[/math] по признаку перпендикулярности прямой и плоскости. Следовательно по признаку перпендикулярности плоскостей следует, что [math](C_1MK)\perp(BB_1C_1)[/math], так как [math](C_1MK)[/math] содержит прямую [math]KM[/math]. Значит [math](KC_1M)[/math] - искомое сечение.

б) Проекция [math]C_1K[/math] на плоскость [math]BB_1C_1C[/math]: [math]MK\perp BC,\;C_1M[/math] - проекция [math]C_1K[/math]. [math]\angle KC_1M[/math] - искомый угол.

[math]\cos\angle KC_1M=\frac{C_1M^2+C_1K^2-MK^2}{2C_1M\times C_1K}[/math]

[math]\begin{array}{l}С_1M=\sqrt{C_1C^2+MC^2}=\sqrt{6+1}=\sqrt7\\C_1K=\sqrt{CC_1^2+CK^2}=\sqrt{6+4}=\sqrt{10}\\MK=KC\times\sin60^\circ=2\times\frac{\sqrt3}2=\sqrt3\end{array}[/math]

[math]\cos\angle KC_1M=\frac{7+10-3}{2\times\sqrt{70}}=\frac{14}{2\sqrt{70}}=\frac{\sqrt{70}}{10}[/math]

Ответ: [math]\frac{\sqrt{70}}{10}[/math]

15

Решите систему неравенств

[math]\left\{\begin{array}{l}\left(\frac14\right)^\frac{10-x^2}2\geq8^x,\\\log_{2x+5}(x^2-28x-7)>0\end{array}\right.[/math]

Показать ответ

решим первое неравенство системы.

1. [math]\left(\frac14\right)^\frac{10-x^2}2\geq8^x;\;\;\;\;2^{x^2-10}\geq2^{3x};\;\;\;x^2-10\geq3x;[/math]

[math]\begin{array}{l}\;\;x^2-3x-10\geq0;\;(x+2)(x-5)\geq0;\\x\in(-\infty;-2\rbrack\cup\lbrack5;+\infty)\end{array}[/math]

2. Решим второе неравенство системы

[math]\log_{2x+5}(x^2-28x-7)>0[/math]

ОДЗ [math]\left\{\begin{array}{l}\begin{array}{c}x^2-28x-7>0;\\2x+5>0;\end{array}\\\;\;\;\;\;\;2x+5\neq1;\end{array}\right.\left\{\begin{array}{l}\begin{array}{c}x>14+\sqrt{203}\;или\;x<14-\sqrt{203}\\x>-2,5\end{array}\\\;\;\;\;\;\;x\neq-2\end{array}\right.[/math]

[math]\begin{array}{l}x\in(-2,5-2)\cup(-2;14-\sqrt{203})\cup(14+\sqrt{203};+\infty)\\(2x+5-1)(x^2-28x-7-1)>0\\(x+2)(x^2-28x-8)>0\\(x+2)(x-(14-2\sqrt{51}))(x-(14+2\sqrt{51}))>0\end{array}[/math]

Учитывая множество решений первого неравенства, получим, что [math]x\in(14+2\sqrt{51};+\infty)[/math]

Ответ [math](14+2\sqrt{51};+\infty)[/math]

16

В выпуклом пятиугольнике ABCDE диагонали BE и СЕ являются биссектрисами неравных углов при вершинах В и С соответственно.

а) Докажите, что точка Е есть центр вписанной или вневписанной окружности треугольника ОСВ, где О — точка пересечения прямых CD и АВ.

б) Найдите площадь пятиугольника ABCDE, если ∠А = 37°, ∠D = 143°, а площадь треугольника ВСЕ равна 13.

Показать ответ

Решение:

а) Пусть точки [math]O[/math] и [math]E[/math] расположены по одну сторону от прямой [math]BC[/math] (см. рисунок), то есть [math]\angle B+\angle C=180^\circ[/math], тогда [math]BE[/math] и [math]CE[/math] являются биссектрисами внутренних углов при вершинах [math]B[/math] и [math]C[/math] соответственно треугольника [math]BCO[/math]. По свойству биссектрисы [math]BE[/math] точка [math]E[/math] равноудалена от сторон [math]BO[/math] и [math]BC[/math]. Аналогично по свойству биссектрисы [math]CE[/math] точка [math]E[/math] равноудалена от сторон [math]BC[/math] и [math]OC[/math]. Следовательно, точка [math]E[/math] равноудалена от всех сторон треугольника [math]BCO[/math] и является центром окружности, вписанной в этот треугольник.

Рассмотрим другой случай. Пусть точки [math]O[/math] и [math]E[/math] расположены по разные стороны от прямой [math]BC[/math](см. рисунок ниже), то есть [math]\angle B+\angle C>180^\circ[/math], тогда [math]BE[/math] и [math]CE[/math] являются биссектрисами внешних углов при вершинах [math]B[/math] и [math]C[/math] cсоответственно треугольника [math]BCO[/math]. По свойству биссектрисы [math]BE[/math] точка [math]E[/math] равноудалена от прямых [math]BO[/math] и [math]BC[/math]. Аналогично точка [math]E[/math] равноудалена от прямых [math]BC[/math] и [math]OC[/math]. Следовательно, точка [math]E[/math] равноудалена от стороны [math]BC[/math] и продолжений сторон [math]BO[/math] и [math]OC[/math] треугольника [math]BCO[/math] и является центром вневписанной окружности этого треугольника. [math]EG,EF,EH\;-\;[/math] радиусы этой окружности.

б) Сумма углов выпуклого пятиугольника равна [math]540^\circ[/math]. По условию задачи [math]\angle A=37^\circ,[/math][math]\angle D=143^\circ,[/math][math]\angle A+\angle D=180^\circ[/math]. Если [math]\angle B+\angle C=180^\circ,[/math], что противоречит условию выпуклости прямоугольника. Значит [math]\angle B+\angle C>180^\circ,[/math], поэтому: [math]\bigtriangleup AGE=\bigtriangleup DHE[/math] по катету и острому углу. Аналогично [math]\bigtriangleup EHC=\bigtriangleup EFC.\;[/math] Последовательно имеем:

[math]S_{ABE}+S_{CDE}=S_{AGE}+S_{GBE}+S_{CHE}-S_{DHE}=S_{GBE\;}+\;S_{CHE}=[/math][math]=S_{BFE}+S_{FCE}=S_{BCE}=13[/math]

[math]S_{ABCDE}=S_{ABE}+S_{CDE}+S_{BCE}=13+13=26[/math]

Ответ: 26

17

Фермер для обработки участка нанял тракториста первого класса на тракторе К-700. Размеры участка 9,5 км х 3,5 км, норма выработки 75 га, стоимость солярки 32 рубля за литр, расход горючего составляет 15 л на 1 га, техническое обслуживание трактора — 5% от зарплаты тракториста. Какую наибольшую оплату за норму нужно положить трактори сту, если затраты фермера на обработку участка не должны превышать 4 009 950 рублей, а аренда трактора стоит 600 рублей за га?

Показать ответ

Решение:

Посчитаем площадь участка [math]S=9,5\times3,5km^2=3325[/math]га.

Стоимость аренды трактора [math]600\times S[/math] рублей, стоимость солярки [math]32\times15\times S[/math] рублей. Обозначим оплату тракториста за обработку 1га за [math]x[/math] рублей. Тогда его зарплата будет составлять [math]S\times x[/math] рублей, а техническое обслуживание трактора 5% от [math]S\times x[/math]. По условию [math]600S+32\times15S+Sx+0,05Sx\leq4009950[/math]

[math]x\leq120[/math]

За 1га наибольшая оплата тракториста 120 рублей, за норму 75га наибольшая оплата [math]75\times120=9000[/math] рублей.

Ответ: 9000 рублей.

18

Найдите все значения параметра а, при которых уравнение [math](tgx\;+\;2)^2-(3a^2\;+\;2a-4)(tgx\;+\;2)+(3a^2-5)(2a+1)\;=\;0[/math] имеет на отрезке [math]\left[-\frac{\mathrm\pi}2;\mathrm\pi\right][/math] ровно два решения.

Показать ответ

Решение:

Сделаем замену [math]tgx+2=t[/math], тогда уравнение пример вид

[math]t^2-(3a^2+2a-4)t+(3a^2-5)(2a+1)=0.[/math]

Пользуясь обратной теоремой Виета, запишем корни этого уравнения [math]t_1=2a+1,\;t_2=3a^2-5[/math], откуда:

[math]\left\{\begin{array}{l}tgx=2a-1,\\tgx=3a^2-7.\end{array}\right.[/math]

Изобразим эскиз графика функции [math]y=tgx[/math] при [math]x\in\left[-\frac{\mathrm\pi}2;\mathrm\pi\right][/math] (см. рисунок). Очевидно, что при [math]x\in\left[-\frac{\mathrm\pi}2;\mathrm\pi\right][/math] уравнение [math]tgx=b[/math] имеет 2 решения при [math]b\leq0[/math] и 1 решение при [math]b>0[/math].

Значит, исходное уравнение на отрезке [math]x\in\left[-\frac{\mathrm\pi}2;\mathrm\pi\right][/math] имеет ровно 2 решения в одном из двух случаев:

[math]\begin{array}{l}1)\;2a-1=3a^2-7\leq0\\2)\;\left\{\begin{array}{l}\begin{array}{c}2a-1>0\\3a^2-7>0\end{array}\\2a-1\neq3a^2-7.\end{array}\right.\end{array}[/math]

Рассмотрим каждый из этих случаев отдельно.

Решив вспомогательное уравнение [math]3a^2-7=2a-1[/math] получим [math]a=\frac{1\pm\sqrt{19}}3[/math]. При [math]a=\frac{1+\sqrt{19}}3[/math] имеет место неравенство [math]2a-1=-\frac13+\frac{2\sqrt{19}}3>0[/math], а при [math]a=\frac{1-\sqrt{19}}3[/math], соответственно,[math]2a-1=-\frac13-\frac{2\sqrt{19}}3<0[/math].

Значит, [math]a=\frac{1-\sqrt{19}}3[/math] соответствует условию задачи.

Решим систему неравенств:

[math]\left\{\begin{array}{c}2a-1>0\\3a^2-7>0\\2a-1\neq3a^2-7\end{array}\right.\;\;\left\{\begin{array}{c}a>\frac12\\a<-\sqrt{\frac73}\;или\;a>\sqrt{\frac73}\\a\neq\frac{1\pm\sqrt{19}}3\end{array}\right.[/math]

Так как [math]\frac{1+\sqrt{19}}3>\sqrt{\frac73}[/math], то

значит ответ будет: [math]\left\{\frac{1-\sqrt{19}}3\right\}\cup\left(\sqrt{\frac73};\;\frac{1+\sqrt{19}}3\right)\cup\left(\frac{1+\sqrt{19}}3;\;+\infty\right)[/math]

19

а) Можно ли число 2015 представить в виде суммы двух различных натуральных чисел с одинаковой суммой цифр?

б) Можно ли число 100 представить в виде суммы двух различных натуральных чисел с одинаковой суммой цифр?

в) Найдите наименьшее натуральное число, которое можно представить в виде суммы четырёх различных натуральных чисел с одинаковой суммой цифр.

Показать ответ

Решение:

а) Да. Например, 2015=2011+4.

б) Нет. Число 100 дает остаток 1 при делении на 9. Чтобы сумма двух чисел с одинаковой суммой цифр давала остаток 1 при делении на 9, оба числа должны давать остаток 5 при делении на 9. От 1 до 100 всего 11 таких чисел: 5, 14, 23, 32, 41, 50, 59, 68, 77, 86, 95. Из них никакие два различных с одинаковой суммой цифр не дают в сумме 100(у чисел меньших или равных 50, сумма цифр равна 5; у чисел, больших 50, сумма цифр - 14)

в) Пусть четыре различных натуральных числа имеют одинаковую сумму цифр. Это означает, что все они дают и тот же остаток при делении на 9. Таким образом, разность любых двух из них будет кратна 9 (и не может быть равной 0), следовательно, эти числа будут членами некоторой арифметической прогрессии с разностью [math]d=9[/math] (не обязательно последовательными)

Наименьшее значение сумма этих чисел будет принимать в том случае, если у каждого из чисел будет минимально возможная разрядность (7 предпочтительнее с этой точки зрения, чем 25, а 25 , в свою очередь, предпочтительнее, чем 106). Тогда наименьшую сумму будут давать те числа, которые являются последовательными членами арифметической прогрессии с разностью [math]d=9[/math], начиная с однозначного (равного соответствующему остатку при делении на 9.)

Сумма цифр равна 1: 1+10+100+1000=1111

Сумма цифр равна 2: 2+11+20+101=134

Сумма цифр равна 3: 3+12+21+30=66

Сумма цифр равна 4: 4+13+22+31=70

Очевидно, что дальше сумма будет только возрастать, т.к. если [math]r[/math] - наименьшее из данных чисел, то из сумма будет [math]r+(r+9)+(r+18)+(r+27)=4r+54>66[/math] при [math]r\geq4[/math]

Итак, наименьшим числом, которое можно представить в виде суммы четырех различных натуральных чисел с одинаковой суммой цифр, является [math]66[/math].

Ответ а) да; б) нет; в) 66.

0 из 0
Ваш ответ Правильный ответ Первичный балл

Здесь появится результат тестовой части.

Нажмите на кнопку «Завершить работу», чтобы увидеть правильные ответы.

Делитесь своими результатами или спрашивайте, как решить конкретное задание. Будьте вежливы, ребята:
1 887 129
Уже готовятся к ЕГЭ, ОГЭ и ВПР.
Присоединяйся!
Мы ничего не публикуем от вашего имени
или
Ответьте на пару вопросов
Вы...
Ученик Учитель Родитель
Уже зарегистрированы?